
D
R
AFT

On Spack, Spackdev and their
incorporation into the HEP software

ecosystem at FNAL

Revision 0.2

Contents

1 Introduction 2

1.1 Overview . 2

1.2 Document Outline . 2

1.3 Terminology . 3

2 Ecosystem Overview 4

3 Spack 6

3.1 Product Description . 6

3.2 Technicalities, Questions and issues . 6

3.3 Snapshot: Limitations of Spack and their Consequences 6

3.3.1 Overly-rigid treatment of compiler as a dependency 7

3.3.2 Inability to propagate variants in a general manner 7

3.3.3 Issues with inheritance of specs . 7

4 Spackdev 7

4.1 Product Description . 7

4.2 Technicalities, Questions and issues. 7

5 cetbuildtools 7

5.1 Product Description . 7

5.2 Technicalities, Questions and issues. 8

6 Lmod 8

6.1 Product Description . 8

6.2 Technicalities, Questions and issues. 8

7 Integration 9

8 Plan 9

8.1 Statement of Final Goal . 9

8.2 Success Criteria . 9

8.3 Current Status . 10

8.4 Milestones . 10

Bibliography 12

1

D
R
AFT

2 Spack and Spackdev Issues and Plan (Rev. 0.2)

1 Introduction

1.1 Overview

In 2014, the SSD group (now TAC) put together a requirements document[1] detailing

the many requirements for HEP software package building and management, both

internal and external, for experiments and collaborations in the art [2] ecosystem. This

document described primarily what stakeholders were accustomed to expecting in the

areas of software development, wider software ecosystem and environment management,

and other related subjects. Examples are relocatability, the ability to develop multiple

packages at once, and the abillity to manage consistent and coherent environments with

different releases of experimental software and their external dependencies. There were

also some, “wish-list” items: requirements not currently or completely satisfied by the

pantheon of tools in use at the time which, while obviously not essential, were desirable.

Up to the present day, the requirements described in the document were satisfied by tools

like Redmine, Git, Subversion, relocatable UPS, CMake, GNU Make, Ninja, cetbuildtools

[3], SoftRelTools [4], SCONS [5], MRB [6], UPS [7] and various scripts and utilities based

around the ssibuildshims toolkit.

Since then, the landscape has changed: HEP is being pushed toward HPC platforms

and applications wherever possible, and some platforms have evolved in ways that

are inimical to current methods of satisfying some of the requirements. As an exam-

ple, MacOS has instituted, “SIP,” a security and protection system which renders the

LD LIBRARY PATH/DYLD LIBRARY PATH method of ensuring relocatability inoperable by

preventing the export of certain environment variables to subprocesses.

At both Fermilab and in the wider HEP community, Spack [8] has been mooted as a

possible solution. Spack is a software packaging tool originating in the HPC community

which manages the specification of build and install procedures for software, including

handling dependencies.

With some enhancements, and in conjunction with Spackdev, a Spack-derived toolkit

developed at Fermilab to handle multi-package simultaneous development and a suitably

enhanced cetbuildtools, it is believed that Spack can satisfy all the requirements listed in

the above-mentioned document in the expanded modern HEP ecosystem that includes

SIP-enabled MacOS machines and flagship HPC systems. It is also possible that the

Lmod system could constribute positively to the ecosystem.

This document is intended to lay out issues and items for consideration in the devel-

opment of an HEP ecosystem utilizing the systems mentioned above, and a roadmap

therefor.

1.2 Document Outline

Chapter 2 will describe the envisioned ecosystem, along with a description of the Spack,

Spackdev, cetbuildtools, and Lmod products in their current states.

D
R
AFT

Spack and Spackdev Issues and Plan (Rev. 0.2) 3

Chapters 3, 4, 5 and 6 will deal respectively with Spack, Spackdev, cetbuildtools and

Lmod and the issues specific to each, while chapter 7 will deal with issues of their

integration into a whole, with any other “glue” that might be appropriate.

Finally, chapter 8 will lay out a plan for the implementation of an HEP ecosystem

using these tools, including milestones, and discuss issues associated with adoption by

experiments and collaborations, and migration from their respective existing systems.

The issue of collaboration and coordination with the HEP XYZ will also be addressed

therein.

1.3 Terminology

ABI: An application binary interface (ABI) is the low-level interface between two program

modules, and determines such details as how functions are called and in which

binary format information should be passed from one program component to the

next, relating to how a binary product was built. For C++ and Fortran software,

the compiler version, language standard, and the operating system version are

critical for ABI compatibility. For Python software, byte-code compiled libraries are

compatible across operating systems, but not generally across Python interpreter

versions. Often, ABI mis-matches can lead to linking failures. Sometimes they lead

to more subtle errors, and are very difficult to diagnose.

API: An application programming interface (API) is the source-code level interface between

two program modules. It is related to source code version. API mis-matches typically

lead to compilation failures.

active product: An active product is one that is currently being used. For executables,

this means they are found on the PATH; for libraries, that they will be loaded when

needed, etc. Only one variant of a given product can be active at one time.

available product: An available product is one that can be made active using the product

management tool’s command(s) to activate the product. Many variants of a given

product may be available at the same time.

closed link: A closed link is the linking of a dynamic library leaving no unresolved sym-

bols.

evaluation of a test: Evaluation of a test means determining whether the given test suc-

ceeds or fails.

external product: An external product is one for which the builder of the product is not

in control of the software or its build system.

integration build area: An integration build area is a collection of build areas, managed

in coherent fashion.

locally-developed product: A locally-developed product is one whose source is under the

control of the developer or release manager.

package (v.): To make a product ready for distribution in its already-built form.

product: See software product.

product build area: A build area is a directory tree into which is put the files generated

by the building of standard build targets for a single software product.

product source area: A product source area is a directory tree containing the source code

for a single software product. Such a product source area should always be under

the control of a source code management system.

release: A particular coherent set of products of known version.

D
R
AFT

4 Spack and Spackdev Issues and Plan (Rev. 0.2)

setup (v.): Produce an environment in which the software can be built or in which a

consistent group of products can be used.

software product: A software product (also shortened to product) is an identifiable, sepa-

rately packaged body of software. It can include such software entities as libraries,

executables, C and C++headers, Fortran module files, documentation and exe-

cutables. A product is built and delivered as a unit, and is the smallest unit of

versioning.

source code management system: A source code management (SCM) system is a system

used for version control of source code. These systems are also called source code

repositories.

standard build targets: A build system typically supports the following list of high-level

targets, which we call standard build targets. These include:

default: The execution of targets that produce files. These include executables,

libraries, and test programs. Also known as the build stage or (for historical

reasons), the all target.

test: Runs user-provided integration and unit tests.

install: Installation of executables, libraries, headers, etc, in the appropriate loca-

tion(s).

package: The production of an “installation kit,” suitable for distribution of the

build products, to be used without requiring the ability to build the product.

clean: The removal of produced files.

help: List available individual component targets, such as libraries, executables

and object files.

target: A target is an identifiable sub-component of a development build procedure that

usually (but not always) corresponds to a generated file. Examples would be a

particular executable, library or test.

toolchain: A term for the collection of tools used to build a software product, such as

compilers, code generators and build management tools.

umbrella product: An umbrella product is a software product that contains only depen-

dencies on other products, and has no additional code, libraries, data files, or

executables of its own.

variant: A variant of a product is a particular version and built configuration of a product.

Here, “built configuration” could include such attributes as the platform, compiler

used, debug or optimization level, or optional feature set.

version: The version of software specifies the source code text of the software. It deter-

mines the API to which users of a product program, e.g. the number and types of

the arguments for a specific function.

2 Ecosystem Overview

The envisaged ecosystem is intended to satisfy the following overarching requirements:

1. To provide a coherent high level system for describing how to build software products

(including those comprising the toolchain) which does not prescribe the build system

(e.g. autotools, CMake, etc) used for those packages.

D
R
AFT

Spack and Spackdev Issues and Plan (Rev. 0.2) 5

2. To provide a system for managing dependencies between products, including those

which depend on particular “variants” of a given software pacakge (compiler, option

sets, etc).

3. To allow for distribution of internally-consistent sets of pre-built products, with a

means to make those products functional in their new locations.

4. To provide an environment for the simultaneous development of multiple interde-

pendent products.

In addition, it is desirable to:

1. Leverage tools and product build specifications provided by the wider HEP and HPC

communities.

2. Minimize as far as possible the amount of in-house development and maintenace

required, both for the products comprising the ecosystem and those products built

and packaged using it.

Spack[8] is intended to be the centerpiece of this ecosystem: this tool provides the

ability to produce build specifications for products using a well defined Domain Specific

Language (DSL) implemented within Python. These specifications describe the possible

variants and dependencies of each product, and provide a prescription for exactly how

the product should be built and installed. When a specification is executed, all required

dependencies are built if not found on the system. This can lead to large product sets

(if left to its own devices, Spack will build binutils, make and CMake, for example), but

mechanisms exist to mitigate this issue, such as packages.yaml.

A recent Fermilab contribution to Spack was the ability to create caches of pre-built

binaries which, when installed in their final position, are updated to be able to find their

dependent libraries.

Spackdev [9] is a small collection of utilities to allow the source checkout and simultane-

ous development of multiple interdependent packages for building via spack.

cetbuildtools [3] is a collection of utilities and CMake code to make the building of HEP

products, especially those using the art framework, more straightforward. In its current

form several aspects of its operation assume the use of products made available using

relocatable UPS. A cetbuildtools enhanced to no longer require relocatable UPS would

provide the ability to build easily HEP products under Spackdev.

Lmod [10] is a backwards-compatible next-generation replacement for the venerable HPC

tool Environment Modules [11]. Both tools manipulate the user’s environment to make

products available (e.g. by amending PATH), but the latter is reputed to be able to deal

with variants and consistent sets of interdependent products. Spack is able to produce

Lmod configurations for the products it builds. More study is required to understand

D
R
AFT

6 Spack and Spackdev Issues and Plan (Rev. 0.2)

if Lmod (and Spack’s use thereof) will satisfy our need for a coherent user environemt

when using multiple Spack-built products together.

3 Spack

3.1 Product Description

Spack is a product management tool written in Python. It has a concept of a repository of,

“package files,” also in Python, which describe how products should be built, including

their dependencies and any variants such as compiler or product-specific feature selec-

tions. When asked to install a product, Spack will, “concretize” its dependencies based

on the product’s requirements and decide what (if anything) needs to be installed first.

Spack may be configured to satisfy dependencies from its primary installed area, other

Spack installed areas, external areas such as /usr or /usr/local, or from a binary,

“buildcache,” in preference to building dependencies from scratch.

Spack is quickly becoming an HPC-standard tool with a large scientific community

contributing both to the product itself and to its default supply of available “package

files.”

3.2 Technicalities, Questions and issues

• It is unclear exactly what fraction of the available package files will be useful to us

in unaltered form, given e.g. Fermilab-specific patches or variants, etc.

• The packages.yaml facility is currently not capable of the flexibility required to

allow easily certain products such as Lua or Python to be used from the system.

• Spack’s spack info gives inconsistent variant information for products mentioned

in packages.yaml. It is unclear what impliciations this might have for builds of

products based on them.

• The buildcache facility is new, basic and untested with a complex set of products

including dependencies satisfied from the system and those built with different

compilers. Further enhancements are likely to be necessary.

• Spack’s dependency system is currently unable to deal directly with (valid) de-

pendencies on products that were built with a different compiler. Multiple Spack

installation areas are a possible solution, but the particulars and logistical issues

with this are currently uncertain and require investigation.

• The issue of making products available for use is delegated by Spack to a module

system such as Lmod. Whether this satisfies the requirement of being, “safe” from

the point of view of ensuring consistent product sets is currently uncertain, may

depend upon exactly which module backend is in use, and requires investigation.

3.3 Snapshot: Limitations of Spack and their Consequences

As of 2018-04-12, the develop branch of Spack has the following limitations with conse-

quences for a Spack and Spack-based build system:

D
R
AFT

Spack and Spackdev Issues and Plan (Rev. 0.2) 7

3.3.1 Overly-rigid treatment of compiler as a dependency

3.3.2 Inability to propagate variants in a general manner

3.3.3 Issues with inheritance of specs

4 Spackdev

4.1 Product Description

Spackdev is a Python utility that works in conjunction with an existing Spack installation

to create and manage areas in which multiple products can be developed simultaneously.

Spackdev handles the checkout of specified product sources into an area (including any

intermediate packages necessary for a coherent build), and the creation of CMake glue to

allow the multiple products to be built together.

Spackdev also has the ability to create a limited packages.yaml file based on certain

products found on the system, to create a relatively uniform environment from which to

develop without building the world from the ground up.

4.2 Technicalities, Questions and issues.

• Spackdev appears to assume that all products’ source is available via Git. It is

unclear whether there is a mechanism for incorporating manually-checked-out

product sources, for instance using Subversion or CVS.

• Likely use cases include the checking out of multiple product sources with different

branches or version tags. It is unclear what if any enhancements would be required

to support this, or if branch / tag adjustments would be done manually after the

fact.

• Spackdev assumes that the build-system to be used is CMake-based, as does MRB

in the current ecosystem annd is limited to the GNU Make or Ninja generators. In

time, support for the XCode generator on MacOS may be a reasonable enhancement.

• How Spackdev may interact with a complex Spack configuration such as multiple

repositories, install areas and buildcaches may need investigation and adjustment.

• Spackdev’s ability to produce and/or manipulate a packages.yaml file will need

to be enhanced as our understanding of Spack’s features and our needs improves,

and as they evolve.

5 cetbuildtools

5.1 Product Description

cetbuildtools is a collection of utility scripts and CMake files to facilitate the building

of HEP packages, especially but not exclusively those intended to work with the art

framework. Features include the ability to set up the dependent products required

to build a particular product, generate relocatable UPS table files and CMake config

D
R
AFT

8 Spack and Spackdev Issues and Plan (Rev. 0.2)

files for product installation, build ROOT dictionaries and other plugin libraries, and

a comprehensive utility for declaring and configuring CMake tests. It is also able to

integrate with the MRB system, which provides support for CMake-based multi-package

development.

5.2 Technicalities, Questions and issues.

• In addition to the relocatable UPS table file generation functionality, there are

many places in cetbuildtools which rely on environment variables to obtain infor-

mation about products that are currently provided by relocatable UPS, such as

XXX VERSION, XXX INC and XXX LIB. These uses would have to be replaced by the

equivalent calls to obtain the information from Spack.

• Functionality would need to be added to replace the current relocatable UPS table

file generation and dependency setup facilities with equivalent facilities to generate

Spack package files from a template and make dependent packages available (e.g.

via spack load).

6 Lmod

6.1 Product Description

Lmod is the latest implementation of a tool called Environment Modules, long used in the

HPC community, used for managing availability to the user of product with different

versions. It operates using modulefiles, which describe what variables should be added

or altered in the user’s environment to make a product available for use. Modulefiles are

written in the Lua scripting language; or Tcl modulefiles created for the earlier-generation

Environment Modules may be used for backward compatibility reasons.

6.2 Technicalities, Questions and issues.

• Spack commands such as spack load may be configured to use Lmod, but it is

unclear how different variants of a product are dealt with since vanilla Lmod only

understands the concept of one or two numeric version numbers in order to decide

what product to set up..

• Lmod does not appear to have the ability to throw an error when a product is set

up which is inconsistent in its dependencies, either internally or with products

already set up in the current environment. Instead, Lmod simply overrides the

earlier product version with the later-specified one.

• Lmod operates by adding variables to the environment, including variables describ-

ing the location of libraries and modifying PATH. While Lua adds a smaller number

of new variables per product to the environment than relocatable UPS, it is still

a significant addition to the environment when tens or even a small number of

hundreds of products are involved.

D
R
AFT

Spack and Spackdev Issues and Plan (Rev. 0.2) 9

7 Integration

The integration of the aforementioned tools into a coherent ecosystem will require not

only an undestanding of the issues mentioned in earlier sections, but also a thorough

understanding of exactly what a fully functioning instance of the ecosystem would

look like, including possibly mutiple Spack installations and repositories, some shared

across multiple experiments, and providing for multiple versions of multiple product

distributions in multiple variants.

Minimum reassurance of a fully functioning system will involve:

• Multiple releases of a distribution with multiple compilers and multiple variants.
• A mix of installed products including those in different spack installation areas,

some installed from scratch, and some installed from buildcache after having been

compiled elsewhere (and where such products and dependencies are no longer in

their originally-referenced locations on the final installation target).
• A set of products satisfied by packages.yaml which differs in meaningful respects

from the environment in which products installed from buildcache were compiled

originally.
• A successful build of a set of products with Spackdev built on such a heterogeneous

system, followed by successful use of those built products via buildcache on a

different system, from a different location.

It remains to be seen whether Lmod is a necessary part of the ecosystem, and what the

environment would look like in that case.

As described hitherto, there remain significant uncertainties in the operation charac-

teristics of the final system. In addition, the development cycle of the Spack product is

current fast-moving and somewhat unstable. Consequently, an automated set of tests to

detect regressions in the behavior we need as described above would be highly desirable

moving forward, even post-development.

8 Plan

8.1 Statement of Final Goal

The ultimate goal of this project is to have an ecosystem which is able long-term to

support the development, distribution and use of Fermilab HEP software projects and

experimental collaboration software on all required platforms with only reasonable

migration costs for those projects and experiments from their existing systems.

8.2 Success Criteria

In order for the Spack and Spackdev-based ecosystem project to be considered a suc-

cessful replacement to the old relocatable UPS, cetbuildtools and MRB-based system:

1. At least one software project previously using relocatable UPS products, cetbuildtools

and MRB must have migrated its development, build-and-test, and distribution

operations to the new ecosystem.

D
R
AFT

10 Spack and Spackdev Issues and Plan (Rev. 0.2)

2. We must have buy-in from all the groups who will ultimately be responsible for

producing release distributions of HEP software that is currently based on any of

the following:

• Distributions of relocatable UPS-packaged products.

• cetbuildtools.

• MRB.

This includes not only experimental collaborations and software projects but also

those groups producing release distributions. Ultimately, we must have an agreed-

upon end date for Fermilab support for relocatable UPS product distributions of

experimental and support software, and for MRB and the relocatable UPS-bound

cetbuildtools.

It will have to be possible for middleware projects such as art, and likely LArSoft, to

produce both relocatable UPS and Spack products in the short term, but maintaining

both ecosystems in parallel is not sustainable going forward due to the maintenance

burden of providing parallel and compatible sets of product stacks including third-party

products.

8.3 Current Status

• A preliminary implementation of buildcache functionality has been added to Spack.

• A preliminary implementation of Spackdev is available.

• A very preliminary version of cetmods, the UPS-free successor to cetbuildtools is in

process but needs work.

• Basic product stacks are being worked on for CMS and art, and a stack for CMS’

FWLite already exists.

• Explorations with stacks involving multiple compilers are just beginning.

8.4 Milestones

1. Build a basic tool stack comprising two distinct toolchains (discounting the native

compiler) on one Linux and one MacOS platform, making maximum reasonable use

of products that may be reasonably expected to be available on each system (issue

#18396).

2. Configure the current environment to be able to use a product’s executables and

any libraries both at link and execution time on Linux and on a MacOS system with

SIP enabled (issue #18406).

3. “Build” an empty product that has only dependencies (issue #18397).

4. Set up multiple products for use by referring directly only to an umbrella product

(issue #18408).

5. On both Linux and MacOS, build a small set of products in one location, transfer

it to another via buildcache and successfully build a dependent product against it

without the originally-built set being present (issue #18399).

6. Use sucessfully a non-trivial product relocated to a system with a materially different

packages.yaml, i.e. where product dependencies were in packages.yaml but now

are not, or vice versa, or were in packages.yaml in both installations but in different

locations (issue #18409).

https://cdcvs.fnal.gov/redmine/issues/18396
https://cdcvs.fnal.gov/redmine/issues/18396
https://cdcvs.fnal.gov/redmine/issues/18406
https://cdcvs.fnal.gov/redmine/issues/18397
https://cdcvs.fnal.gov/redmine/issues/18408
https://cdcvs.fnal.gov/redmine/issues/18399
https://cdcvs.fnal.gov/redmine/issues/18409

D
R
AFT

Spack and Spackdev Issues and Plan (Rev. 0.2) 11

7. Use successfully a non-trivial product relocated to a system where a dependency is

a virtual package whose definition and/or location has changed (issue #18410).

8. Produce a Spack-based distribution of the canvas product stack art-precursor

distribution on both toolchains and both platforms mentioned above (issue #18411).

9. Demonstrate (on both Linux and MacOS) successful use of interactive ROOT after

relocation, both of itself and (independently, from and to different locations) the

dependencies against which it was built (issue #18412).

10. Produce a successful Spack build of the art and gallery suites passing all tests

(issue #18413).

11. Produce a successful Spackdev build of the art and gallery suites passing all tests

(issue #18414).

12. Produce a successful Spackdev build of critic, passing all tests, using art and gallery

as installed and relocated (issue #18415).

13. Produce usable relocatable UPS tarballs for products built using Spack and Spack-

dev (issue #18416).

14. Produce a full distribution built using the Jenkins facility, and successful use

thereof (issue #18417).

15. Select and use one of two available variants of a release distribution (issue #18418).

16. Select and use one of two available versions of a release distribution (issue #18419).

17. Produce a release distribution utilizing debug variants of art suite and selected third

party products (issue #18420).

18. “Clean up” an old release distribution while retaining those products that are

required by other releases (issue #18421).

19. When building releases against multiple compilers, avoid unnecessary duplica-

tion of installations of non-architecture- or non-compiler-dependent products (e.g.

comprising only headers, or data, or native-compiled executables and/or C-only

libraries) (issue #18422).

20. Demonstrate the ability to install easily and maintain and use a workable installation

of multiple release distributions (issue #18423).

21. Produce a set of automated tests of the ecosystem to guard against regressions

introduced during continued development of its constituent tools (issue #18424).

22. Obtain Fermilab management buy-in on replacement of the old ecosystem (issue

#18425).

23. Obtain agreement in principle from all software projects and experimental collabo-

rations still using one or more components of the old system (issue #18426).

24. Obtain agreement on an end date from all stakeholders, with agreement from

management on the effort required to support both systems during the transition

period (issue #18427).

25. Cease distribution of new software releases using relocatable UPS, and of all devel-

opment of relocatable UPS-bound cetbuildtools, and of MRB (issue #18428).

https://cdcvs.fnal.gov/redmine/issues/18410
https://cdcvs.fnal.gov/redmine/issues/18411
https://cdcvs.fnal.gov/redmine/issues/18412
https://cdcvs.fnal.gov/redmine/issues/18413
https://cdcvs.fnal.gov/redmine/issues/18414
https://cdcvs.fnal.gov/redmine/issues/18415
https://cdcvs.fnal.gov/redmine/issues/18416
https://cdcvs.fnal.gov/redmine/issues/18417
https://cdcvs.fnal.gov/redmine/issues/18418
https://cdcvs.fnal.gov/redmine/issues/18419
https://cdcvs.fnal.gov/redmine/issues/18420
https://cdcvs.fnal.gov/redmine/issues/18421
https://cdcvs.fnal.gov/redmine/issues/18422
https://cdcvs.fnal.gov/redmine/issues/18423
https://cdcvs.fnal.gov/redmine/issues/18424
https://cdcvs.fnal.gov/redmine/issues/18425
https://cdcvs.fnal.gov/redmine/issues/18425
https://cdcvs.fnal.gov/redmine/issues/18426
https://cdcvs.fnal.gov/redmine/issues/18427
https://cdcvs.fnal.gov/redmine/issues/18428

D
R
AFT

12 Spack and Spackdev Issues and Plan (Rev. 0.2)

Bibliography

[1] Garren L, Green C, Kowalkowski J and Paterno M Requirements for software prod-

uct building and management URL https://cd-docdb.fnal.gov:440/cgi-bin/

RetrieveFile?docid=5380&filename=requirements.pdf&version=1

[2] The art event processing framework: URL http://art.fnal.gov

[3] The cetbuildtools home page: URL https://cdcvs.fnal.gov/redmine/projects/

cetbuildtools

[4] Amundson J 2001 SoftRelTools version 2 at Fermilab Computing in High Energy and

Nuclear Physics (CHEP 2000): Proceedings. (Computer Physics Communications vol

140) ed Mazzucato M and Michelotto M pp 731–732

[5] The SCONS home page: URL http://www.scons.org/

[6] The MRB home page: URL https://cdcvs.fnal.gov/redmine/projects/

cetbuildtools

[7] The UPS and UPD home page: URL http://www.fnal.gov/docs/products/ups/

[8] The Spack home page: URL https://github.com/spack/spack/wiki

[9] The Spackdev home page: URL https://github.com/amundson/spackdev

[10] The Lmod environment modules home page: URL https://www.tacc.utexas.edu/

research-development/tacc-projects/lmod

[11] The Environment Modules home page: URL http://modules.sourceforge.net

https://cd-docdb.fnal.gov:440/cgi-bin/RetrieveFile?docid=5380&filename=requirements.pdf&version=1
https://cd-docdb.fnal.gov:440/cgi-bin/RetrieveFile?docid=5380&filename=requirements.pdf&version=1
http://art.fnal.gov
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
http://www.scons.org/
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
https://cdcvs.fnal.gov/redmine/projects/cetbuildtools
http://www.fnal.gov/docs/products/ups/
https://github.com/spack/spack/wiki
https://github.com/amundson/spackdev
https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
https://www.tacc.utexas.edu/research-development/tacc-projects/lmod
http://modules.sourceforge.net

	1 Introduction
	1.1 Overview
	1.2 Document Outline
	1.3 Terminology

	2 Ecosystem Overview
	3 Spack
	3.1 Product Description
	3.2 Technicalities, Questions and issues
	3.3 Snapshot: Limitations of Spack and their Consequences
	3.3.1 Overly-rigid treatment of compiler as a dependency
	3.3.2 Inability to propagate variants in a general manner
	3.3.3 Issues with inheritance of specs

	4 Spackdev
	4.1 Product Description
	4.2 Technicalities, Questions and issues.

	5 cetbuildtools
	5.1 Product Description
	5.2 Technicalities, Questions and issues.

	6 Lmod
	6.1 Product Description
	6.2 Technicalities, Questions and issues.

	7 Integration
	8 Plan
	8.1 Statement of Final Goal
	8.2 Success Criteria
	8.3 Current Status
	8.4 Milestones

	Bibliography

